Etiological Spectrum of Pancytopenia

*Basak TB, 1 Talukder SI2

Pancytopenia is a reduction in the number of each type of peripheral blood cell. Therefore the role of bone marrow examination in diagnosis of pancytopenia is important to know etiology of pancytopenia. The objective of the study was to know the aetiology of pancytopenia. This descriptive study was carried out in the Department of Medicine, Dinajpur Medical College Hospital, Dinajpur during the period of February 2011 to July 2011. Fifty patients with pancytopenia were included. Full blood counts, bone marrow examinations and trephine biopsies were performed according to standard methods. Statistical packages for social science (SPSS-16) was used to analyze data. Out of 50 patients, 36% were of aplastic anaemia, 16% megaloblastic anaemia, 14% myelodysplastic syndrome and 12% acute lymphoblastic leukemia (ALL), Hypersplenism in 10%, 4% non Hodgkin lymphoma (NHL) and 4% multiple myeloma, 2% each of acute myeloblastic leukemia and chronic myelocytic leukemia. All of these disorders were common in male as compared to female. Aplastic anaemia was the commonest cause of pancytopenia followed by megaloblastic anemia and myelodysplastic syndrome in our study.

[Dinajpur Med Col J 2014 Jan; 7 (1):21-25]

Key words: Pancytopenia, megaloblastic anemia, aplastic anemia

Introduction

Pancytopenia is defined as a reduction in all three types of cellular components in peripheral blood and this involves anaemia, neutropenia, and thrombocytopenia. It presents with symptoms of marrow failure such as pallor, dyspenoea, bleeding, bruising and increased propensity to infections. The causes of this condition are many and varied. The incidence of various disorders causing pancytopenia varies due to geographical

distribution and genetic disturbances. The management and prognosis of pancytopenia depends on the underlying pathology.^{3,4} Pancytopenia can be due to decrease in hemaopoietic cell production in the bone marrow e.g. by infections, toxins, malignant cell infiltration or suppression or can have normocellular or even hypercellular marrow, without any abnormal cells, e.g. ineffective hematopoiesis and dysplasia, maturation arrest of all cell lines and peripheral sequestration of blood cells.⁵

- 1. *Dr. Timir Baran Basak, Associate Professor, Department of Medicine, Dinajpur Medical College Hospital, Dinajpur
- 2. Dr. Sadequel Islam Talukder, Assistant Professor, Department of Pathology, Dinajpur Medical College Hospital, Dinajpur

^{*} For correspondence

Bone marrow biopsy plays a significant role understanding aetiology the pancytopenia, in patients who need a laboratory work up. ⁶ Commonly, it is done for the evaluation of unexplained cytopenias and malignant conditions like leukemia. Bone marrow examination is also at times done for the diagnosis or staging of a neoplasm and storage disorders. Trephine biopsy is usually performed when there is hypoplasia or aplasia on aspiration. Pancytopenia is an important clinicohaematological entity encountered in our day-to- day clinical practice. There are varying trends in its clinical pattern, treatment modalities, and outcome. The aim of this study was to evaluate the etiological spectrum of pancytopenias on the basis of bone marrow examination

Methods

We conducted a cross sectional, single center Hospital, (Dinajpur Medical College Dinajpur) study from February 2011 to July 2011 on 50 cases of pancytopenia. Patients with pancytopenia above 14 years of age, and of either sex were included. Those who were diagnosed already by bone marrow examination, those who received blood transfusion and patients cancer on chemotherapy were not included in this study. Pancytopenia was diagnosed in the presence of anemia (hematocrit value < 0.35 in women, <0.40 in men), leucopenia (WBC<3.5x10⁹/L) and thrombocytopenia (platelets < 150 x $10^{9}/L$).

In all patients, a detailed relevant history including the treatment history, history of drug intake, radiation exposure. Meticulous clinical examination of every patient was done for pallor, jaundice, hepatomegaly, splenomegaly and lymphadenopathy. After history and examination basic investigations were performed for each patient including Haemoglobin, hematocrit value, Total leukocyte count, Platelet count, Reticulocyte

count. Absolute values including packed cell mean corpuscular (MCV), haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) were calculated for every patient, Blood film examination after staining with giemsa's stain for red cell morphology and malarial parasite (MP) was performed, Chest radiograph and abdominal ultrasonography was done in selected patients. Bone marrow examination was done in all patients and wherever required, a trephine biopsy were also performed. Statistical packages for social science (SPSS 16) was used to analyze data.

Results

This was a hospital based prospective study conducted on 50 indoor patients pancytopenia at the Department of Medicine, Dinajpur Medical College Hospital, Dinajpur during the period of February 2011 to July 2011. Some important observations were made from this study as under. Majority of the patients (64%) were male and 36% were female. Male to female ratio were 1.7:1. Sex wise distribution is given in table-I. This study showed that majority of the patients (54%) had malignant disorders of bone marrow which causes pancytopenia.

Table1: Sex distribution of the patients (n=50)

Sex	Frequency	Percentage (%)
Male	32	64.0
Female	18	36.0
Total	50	100.0

Minimum age for patient with pancytopenia was 15 years and maximum age was 70 years. Age wise distribution is given in table-II.

Table 2: Age distribution of the patients (n=50)

Age	Frequency	Percentage (%)
15-20	10	20.0
21-30	06	12.0
31-40	10	20.0
41-50	15	30.0
51-60	04	8.0
61-70	05	10.0
Total	50	100.0

Among clinical features pallor was present in all patients. Clinical features of patients with pancytopenia are listed in table-III. Majority of the patients (50%) were having haemoglobin 4-8gm/dl, 28% patients were with haemoglobin less than 4gm/dl and 22% patients were with haemoglobin between 9-10 gm/dl. Sex to Hemoglobin distribution is given in table-IV.

Table 3: Clinical features of patients presenting with pancytopenia

Clinical features	Frequency	Percentage (%)
Pallor	50	100.0
Fatigue	15	30.0
Splenomegaly	12	24.0
Lymphadenopathy	11	22.0
Fever	09	18.0
Bleeding	05	10.0
Weight loss	04	8.0
Hepatomegaly	04	8.0
Jaundice	02	4.0

Table 4: Distribution of sex and haemoglobin level (n=50)

Hemoglobin	No of male	No of	Total
gm/dl	patients	female	
		patients	
1-4	8 (16.0%)	3 (6.0%)	11 (22.0%)
4-8	16 (32.0%)	9 (18.0%)	25 (50.0%)
9-10	8 (16.0%)	6 (12.0%)	14 (28.0%)
Total	32 (64.0%)	18 (36.0%)	50
			(100.0%)

Table 5: Causes of pancytopenia

Disease	Frequency	Percentage (%)
Aplastic anaemia	18	36.0
Megaloblastic	8	16.0
Myelodysplatic	7	14.0
syndrome	6	12.0
Acute lymphoblastic	5	10.0
leukemia	2	4.0
Hypertension	2	4.0
Non Hodgkin	1	2.0
lymphoma	1	2.0
Multiple myeloma		
Acute myeloblastic		
leukemia		
Chronic myelocytic		
leukemia		
Total	50	100.0

Out of 50 patients, 36% were of aplastic anaemia, 16% megaloblastic anaemia, 14% myelodysplastic syndrome and 12% acute lymphoblastic leukemia (ALL), Hypersplenism in 10%, 4% non Hodgkin lymphoma (NHL) and 4% multiple myeloma, 2% each of acute myeloblastic leukemia and chronic myelocytic leukemia. All of these disorders were common in males as compared to female. The results are listed in the table-V.

Discussion

Pancytopenia is a serious haematological problem, which makes the patient prone to anaemic manifestations, infections and bleeding tendency. Underlying it are many diseases, which are diagnosed by 8 bone marrow aspiration and trephine biopsy.

Pancytopenia is not uncommon hematological problem encountered in our clinical practice and should be suspected on clinical grounds when a patient presents with unexplained anemia, prolonged fever and tendency to bleed. In our study aplastic anemia constituted the largest group (36%) which is consistent with the study by Niazi M^9 . who showed it in 38.3 Epidemiologically, aplastic anemia has a pattern of geographic variation opposite to that of leukemia, with higher frequency in the 10 developing world than in the industrialized West¹⁰. Large prospective studies indicate an annual incidence of two 11 new cases per million populations in Europe and Israel.¹¹ Megaloblastic anemia is the 2nd common disorder in our patients. In other similar studies its frequency ranges from as low as 13.04% 12 to as higher as 68%. 13 Megaloblastic anemia due to vitamin B12 or folic acid deficiency is now a well-recognized and established cause of cytopenias. 14 Though we were unable to determine the underlying cause of megaloblastic anemia, but folate deficiency is more common in children, while B12 deficiency is more common in adults.¹⁵ It is a common problem in the developing countries. A possible explanation of folates deficiency in our country could be the various chronic inflammatory disorders of the gut like chronic diarrheas and malabsorptive states apart from poor nutrition. Hypersplenism was present in 10%, which is found to be present in 14.4% cases in a study by Iqbal W.⁵ In this study leukemias were noted, with acute lymphoblastic leukemia as the commonest malignancy in patients our (12%).Approximately 2500 cases per annum are diagnosed in the United States, accounting for about one third of all the cases of childhood cancers. Eighty percent of these are acute lymphoblastic leukemia (ALL), 17% are acute myeloid leukemia (AML) and the rest are cases of chronic myeloid leukemias. 16 The incidence of ALL in our country is lower as compared to the developed countries, as is the case in India and China. 17,18 Common clinical presentations were pallor, visceromegaly, fatigue, fever, and bleeding from nose and gastrointestinal tract.

Conclusion

Aplastic anemia was the commonest and most serious non-malignant disorder found in this study. Amongst the non-malignant hematological disorders, megaloblastic anemia was the most common disorder found on bone marrow examination in this study. Myelodysplastic syndrome and leukemia lymphoblastic the was most common the amongst malignant hematological disorders. Bone marrow aspiration and trephine biopsy were found to be useful diagnostic tools in evaluating the aetiology of pancytopenia.

References

- 1. Kar M, Ghosh A. Pancytopenia. JIACM 2002; 3(1): 29-34.
- 2. Khan NM, Ayub M, Nawaz KH, Naqi M, Hussain T, Shujaat H, et al. Pancytopenia: clinicopathological study of 30 cases at Military Hospital, Rawalpindi. Pak J Pathol 2001; 12(2): 37-41.
- 3. International Agranulocytosis and Aplastic Anemia study group: Incidence of Aplastic Anemia; The relevance of diagnostic criteria. Blood 1987; 70: 1718.
- 4. Keisu M, Ost A. Diagnosis in patients with severe Pancytopenia suspected of having Aplastic Anemia. Euro J Haematol 1990; 45: 11.
- 5. Iqbal W, Hassan K, Ikram N, Nur S. Aetiological breakup of 208 cases pancytopenia. J Rawal Med Coll 2001;5 (1): 7-9.
- 6. Iqbal W, Hassan K, Ikran N, Nur S. Aetiological Breakup in 208 Cases of Pancytopenia. J Rawal Med Coll 2001; 5(1): 7-10.
- 7. Rahim F, Ahmad I, Islam s, Hussain M, Khattak T AK, Bano Q. Spectrum of hematological disorders in children observed in 424 consecutive bone marrow aspirations/biopsies. Pak J Med Sci 2005; 21: 433-6.
- 8. Dodhy MA, Bokhari N, Hayat A. Aetiology of Pancy- topenia, A five-year experience. Ann Pak Inst Med Sci 2005; 1(2): 92-5.
- 9. Niazi M, Raziq F. The incidence of underlying pathology in pancytopenia. An experience of 89 cases. J Postgr Med Inst 2004; 18(1): 76-9.
- Issaragrisil S, Leaverton PE, Chansung K, Thamprasit T, Porapakham Y, V annasaeng S, et al. Regional patterns in the incidence of aplastic anemia in Thailand. The Aplastic

- Anemia Study Group. Am J Hematol 1999; 61: 164-8.
- 11. Young NS. Hematopoietic cell destruction by immune mechanisms in acquired aplastic anemia. Semin Hematol 2000; 37:3-14.
- 12. Memon S, Shaikh S, Nizamani AA. Etiological spectrum of pancytopenia based on bone marrow examination in children. J Coll Physicians Surg Pak 2008; 18(3): 163-7
- 13. Ng SC, Kuperan P, Chan KS, Bosco J, Chan GL Megaloblastic Anemia- a review from University Hospital, Kuala Lumpur. Ann Acad Med Sing 1988; 17:261.
- Chandra J, Jain V, Narayan S, Sharma S, Singh V , Kapoor AK, et al. Folate and cobalamin deficiency in megaloblastic anemia in children. Indian Pediatr 2002; 39:453-7.
- 15. Mannan M, Anwar M, Saleem M, Wigar A, Ahmad MA. Study of serum vitamin B12 and folat levels in patients of megaloblastic anemia in northern Pakistan. J Pak Med Assoc 1995; 45:187.
- 16. Rosse WF. The control of complement activation by the blood cell sin paroxysmal nocturnal haemoglobinuria. Blood 1986; 67: 268-9.
- 17. Gaynon PS, Bostrom BC, Hutchinson RJ. Duration of hospitalization as a measure of cost on Children's Cancer Group acute lymphoblastic leukemia studies. J Clin Oncol 2001; 19: 1916-25.
- 18. Rajajee S, Desikulu MV, Pushpa V. Survival of childhood acute lymphoblastic leukemia: experience in Chennai. J Trop Pediatr 1999; 45:367-70.